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Abstract—Today’s video streaming platforms offer videos in
a variety of quality settings in order to attract as many users as
possible. But even though a sufficiently dimensioned network can
not always be provided for the best experience, users are asking
for high QoE. Users consume the content of a video streaming
platform in different ways, while video delivery platforms cur-
rently do not account for these scenarios and thus ensure at best
mediocre QoE. In this paper, we develop a queuing model and
provide a mean-value analysis to investigate the impact of user
profiles on the QoE of HTTP Video Streaming for typical user
scenarios. Our results show that the user profile and particularly
the scenario have to be respected when dimensioning the buffer.
Further, we present recommendations on how to adapt player
parameters in order to optimize the QoE for individual users
profiles and viewing habits. The provided model leads to relevant
insights that are required to build a system that guarantees each
user the best attainable QoE.

I. INTRODUCTION

There are many ways to improve the QoE in Hypertext
Transfer Protocol (HTTP) video streaming. However, these
improvements, such as adaptive video streaming, often come
with a harsh trade-off like a reduction of the videos resolution.
Nonetheless, a user might insist on watching a certain video in
HD even though his network does not provide enough band-
width to stream the whole video without stalling. A different
way to optimize the QoE is dimensioning the size of the video
buffer. However, QoE varies for each user and users perceive
problems differently [1]. E.g. some users prefer many short
stalling events while others prefer fewer but longer stalling
events. In addition, users consume videos in different ways.
Some users may want to watch the entire video. In contrast,
other users may search for certain content by watching only
a short part of a video if it does not match the content they
are searching for. Measurement studies indicated that 60 % of
the videos requested were watched for less than 20 % of their
total duration [2].

For these behaviors, different things are necessary in order
to provide a good QoE. We know that the QoE depends
on the number and length of stalling events. Further, we
know that initial delay has an impact on the QoE. All these
variables are dependent on the buffer size. Therefore, QoE
can be controlled by dimensioning the buffer size. A larger
buffer means that stalling events are less but longer and that
the initial delay is larger. The key questions investigated in
this paper are as follows.

• Do we need to know the QoE preferences of the user in
order to optimize QoE? E.g. whether a user prefers few
long stalling events over many short stalling events?

• Do we need to know the users behavior or the usage
scenario? E.g. video browsing or whether a user only
watches a few seconds of a video?

• Do we need to know the video characteristics and the
current network situation?

We approached these questions by modeling the video
buffer for HTTP Video Streaming as M/M/1 queue with pq-
policy. The model provides the status of the buffer at any
point in time for a given network bandwidth and the video
bit rate. We conduct a mean-value analysis of the queueing
model that returns stalling frequency and stalling ratio. Using
these results, we can calculate the QoE of a video for any
given user. To answer the questions above, we extend and
combine existing QoE models in such a way that different
user profiles can be specified and analyzed. We introduce
profile parameters that describe a user’s general sensitivity
to stalling and whether he prefers many short stalling events
or few long stalling events. In the analysis, we consider the
three major video streaming usage scenarios, (1) ’watch-later’,
(2) default video streaming, and (3) video browsing. To the
best of our knowledge, this is the first study that addresses the
questions above and investigates individual user preferences
for HTTP video streaming QoE. As a further contribution,
recommendations are provided how to take into account the
results in practice. The answers and results are an important
step for realizing QoE-centric management for HTTP video
streaming.

The remainder of the paper is structured as follows. Sec-
tion II gives a short background on HTTP video streaming
and reviews approaches for improving its QoE with a focus on
video buffer dimensioning. In Section III an M/M/1 queueing
model with pq-policy is presented for analyzing the video
buffer. An extended QoE model based on YouTube QoE is
described in Section IV which allows to analyze individual user
profiles. Section V presents analytic results for different usage
scenarios and infers recommendations for QoE improvement
in practice. The paper is finally concluded in Section VI.

II. BACKGROUND AND RELATED WORK

The increasing popularity of video streaming has driven
intensive research activities on how to optimize the video



delivery to the end user concerning QoE. In particular, HTTP
streaming is deployed by large video service delivery platforms
like YouTube or Netflix and represents the major video delivery
solution, especially for video-on-demand. HTTP video stream-
ing is a combination of download and concurrent playback.
Video data is transmitted to the client via HTTP and stored in
an application buffer. After the download of a sufficient amount
of data p (which is in the order of a few video seconds, e.g.
for YouTube [3]), the video play out starts at the client. As
soon as the video buffer falls below a certain threshold q, the
video stalls [3]. We refer to this threshold policy as pq-policy
and model the video buffer at the client side by a queueing
model with pq-policy.

Due to the reliable transmission over TCP, no video
degradations can be observed, but resource problems in the
network or at the video server manifest as initial delays or as
interruptions and stalling of the video during play out.

Many different solutions are proposed in literature how to
overcome those QoE degradations for HTTP video stream-
ing. The solutions can be differentiated among others into
(A) network-based solutions overcoming networking problems
or resource limitations, (B) adaptive streaming approaches
lowering the network demands at the cost of lower video
quality, (C) buffer-based solutions, optimizing/adapting the
video buffer sizes.

A. Solution Approaches for Improved HTTP Streaming QoE

Various resource management mechanisms to improve QoE
for YouTube have been proposed in literature, e.g. in Wifi
mesh networks [4], e.g. using Software-Defined Networking
(SDN) [5]. SDN enhances the interaction between networks
and applications and allows a more dynamic and demand-
based allocation of network resources.To overcome resource
limitations in the content delivery infrastructure, [6] proposes
client-based local caching, P2P-based distribution, and proxy
caching which reduces network traffic significantly and can
therefore avoid QoE degradations.

Recently, big service providers like YouTube rely on HTTP
adaptive streaming (HAS) which adapts the video to the current
network conditions. The video adaptation may be realized by
changing the frame rate, resolution, or quantization of the
video. Although the adaptation results in lower quality, the
major benefits compared to classical HTTP video streaming
is the reduction of stalling events. [7] surveys QoE for HTTP
adaptive streaming and gives an overview of the recent de-
velopments. Besides improved quality adaptation mechanisms
like [8], other approaches aim for example at optimizing the
segmentation of the videos [9] .

B. Analysis of Video Buffer Adaptation and Dimensioning

Subjective studies showed that users prefer initial delays
instead of stalling events [10]. An analytical framework for the
dimensioning of appropriate video buffers for TCP streaming
shows that the initial buffering delay and the size of the buffer
should be as small as possible, yet large enough to avoid
buffer underflows [11]. A concrete approach [12] determines
the optimal, i.e. minimal, initial delay at the client. During this
time, the the video buffer is filled such that no stalling occurs.

Two buffer size adaptation policies are proposed by [13]
which are evaluated by means of a fluid model in terms
of freezing probability. [14] evaluates the impact of network
dynamics and QoS provision on user’s video quality. An ana-
lytical framework models the playback buffer at the receiver as
a G/G/1 queue, however no pq-policy is considered. Further,
video quality is considered in terms of the start-up delay or
fluency of video playback. Based on that, adaptive playout
buffer management schemes are proposed.

So far, no queueing system with pq-policy is applied to
analyze QoE for HTTP video streaming and to dimension
video buffers accordingly. We go even one step further and
consider individual user profiles by utilizing a parametrized
QoE model. In queueing theory, the related threshold policy
is denoted as N -policy introduced by [15] with N = p and
q = 0; the server stops whenever the system becomes empty
and resumes service when the number of waiting customers in
the system (i.e. the video buffer in our case) reaches a threshold
value N ; in contrast to the transient phase in the steady state,
q has no influence on the performance, see Section III-B.

Various researchers analyzed the N -policy. [16] derives the
stationary joint distribution of queue length and the server’s
status for the GI/M/1. [17] obtains the steady state probabil-
ity distribution of the number of customers in a finite system
for the M/GI/1 system with N -policy. A transient solution
of the M/M/1 queue under pq-policy is derived by [18].

C. Perception of Individual HTTP Video Streaming Users

Results from queueing theory may be applied to dimen-
sioning the video buffer for HTTP streaming in order to
optimize QoE. However, the approaches mentioned above are
either considering QoS parameters only or they apply QoE
models based on mean opinion scores (MOS) of subjects.
However, differences in how QoE degradations are observed
by individual users are not considered. Therefore, this work
is an important step in QoE-centric management of HTTP
video streaming. An analytical model is developed (Section III)
which allows to investigate individual user profiles based on
this parametrized QoE model (Section IV).

Most user studies on HTTP video streaming quantify and
report QoE in terms of MOS, e.g. [3]. However, there is a
diversity in user perception which is eliminated by the process
of averaging subjective ratings. A relationship between the
MOS and the second moment of the user ratings is formulated
as SOS hypothesis and a standard deviation for particular
MOS values is observed up to 0.8 for video QoE [1]. Thus,
user perceptions may fluctuate between good and poor quality
under the same conditions. [1] observes different user types,
denoted as ’hectic’, ’regular’, ’insensitive’ depending on their
sensitivity to QoE degradations. In this paper, we extend
existing YouTube QoE models by user profile parameters
which allows to investigate such diverging user perceptions.

III. SYSTEM MODEL

We provide a system model for video playback, in order
to study the stalling behavior of HTTP video streaming. We
consider the playback of a video consisting of multiple frames.
The frames are downloaded in-order and arrive at the client
with rate λ while the playback time is given by the video



framerate µ, resulting in an offered load of a = λ/µ. Here, a
quantifies the available network bandwidth normalized by the
video framerate.

In order to reduce the number of stalling events during
playback, the video player uses a playback buffer. Video
playback stops, if less than q frames are currently available for
playback and is only resumed if the buffer contains p = q+ d
frames. The normalized buffer size d∗ (in video seconds)
relates the buffer size d (in frames) to the video framerate
µ, i.e. d∗ = d/µ.

Next, we introduce metrics used to evaluate the influence of
the playback buffer parameter selection. The relative amount
of time spent in stalling compared to the total duration of the
playback process including stalling is given by the stalling
ratio R and the number of stalling events normalized by the
video length N∗. For the case of finite videos we furthermore
consider the stalling duration L which gives the sum of times
spent in stalling states during the complete video playback.

To derive the key performance metrics, we model the
system as a M/M/1/∞ queueing model with pq-policy in
Section III-A. A mean value analysis allows then to inves-
tigate the impact of system parameters in the steady state
(Section III-B) but also in the transient phase for the analysis
of short (finite) videos and user aborts (Section III-C).

A. M/M/1 Queue with pq-Policy

The state of the video playback is characterized by the tuple
(i, j), where i ∈ {0, 1} is the playback state of the client, i.e.
the video is not played back if i is 0 and the video is played
back if i is 1 and j ≥ 0 gives the number of unplayed frames
currently available at the client and . Furthermore, we give the
probability of the playback being in state (i, j) as x(i, j). We
obtain the following equilibrium state equations.

λx(0, 0) = 0

λx(0, i) = λx(0, i− 1) i ∈ [1, q)

λx(0, q) = λx(0, q − 1) + µx(1, q + 1)

λx(0, i) = λx(0, i− 1) i ∈ (q, p)

(λ+ µ)x(1, q + 1) = µx(1, q + 2)

(λ+ µ)x(1, i) = λx(1, i− 1) i ∈ (q + 1, p)

+ µx(1, i+ 1)

(λ+ µ)x(1, p) = λ(x(0, p− 1) + x(1, p− 1))

+ µx(1, p+ 1)

(λ+ µ)x(1, i) = λx(1, i− 1) + µx(1, i+ 1) i ∈ (p,+∞)

Due to space constraints, no proof is given for the state
probabilities which can be obtained analogously to [16].

x(0, i) = 0 i ∈ [0, q)

x(0, i) = 1−a
d i ∈ [q, p)

x(1, i) = a(1−ai−q)
d i ∈ (q, p]

x(1, i) = aj−p+1(1−ad)
d i ∈ (p,+∞]

From this we obtain the stalling ratio R as the probability
of being in a stalling state, i.e.

R =

p−1∑
i=0

x(0, i) = 1− a . (1)

B. Mean Value Analysis of Steady State

A mean value analysis of the M/M/1/∞ queueing model
with pq-policy is now conducted which can be derived by
considering Figure 1, in order to obtain the number of stalling
events N∗ and the stalling ratio R.
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Fig. 1. Video buffer status evolving over time with constant video bitrate
and network bandwidth for a finite video of duration T and Z frames.

The initial download begins at t0 and new frames arrive
with rate λ at the client. The number of frames in the buffer
exceeds q the first time at t1. At time t2, the threshold of p
is reached for the first time and playback begins. While the
download of new frames continues with rate λ, frames are
played out with rate µ, resulting in a buffer change with rate
λ− µ. Thus, the number of buffered frames reaches q at time
t3. This process repeats which results in an alternating chain
of stalling and playback phases.

In this analysis we consider the steady state, i.e. especially
neglecting the time t1−t0. First, we consider the time required
for the buffer to fill from q frames to p frames, i.e. obtaining
d frames while no playback is occurring. This time depicts the
average duration L of a single stalling event. In Figure 1 this
is given as the time between t1 and t2, and we get

L = t2 − t1 = p−q
λ = d/λ = d∗/a . (2)

The average stalling length L only depends on the actual buffer
size d and the network bandwidth λ. Next, we consider the
time required for the number of frames in the buffer to decrease
from p to q, i.e. the time between t2 and t3, t3 − t2 = d

µ−λ .
Combining these two equations we get the time between two
stalling event as t3 − t1 = (t3 − t2) + (t2 − t1) = µd

(µ−λ)λ .

The stalling ratio R follows as
R = t2−t1

t3−t1 = 1− a , (3)
yielding the same result as in Eq.(1) in Section III-A.

Finally, we can obtain the number of of stalling events
normalized by video duration by analysing the busy periods
of the system. Here, the mean idle period is given by L = d/λ.

For the mean busy period B it holds B
B+L = 1− R = a ,

which yields B = a
1−a

λ
d and the normalized number of stalls,

N∗ = 1
B = µ−λ

d = 1−a
d∗ . (4)

Eq.(4) can also be derived by considering N∗ = 1
t3−t2 .

While N∗ relates the stalls to the video duration, the stalling
frequency F denotes the number of stalls per time. It holds
F = 1

t3−t1 = aN∗ which is also equal to F = x(0, p− 1)λ
to change the player with the state probability x(0, p− 1) and



the network arrival rate λ. However, from an end user’s point
of view, the metric N∗ but not F is of importance.

Beside the network bandwidth λ1 and the video bitrate µ,
the number N∗ of stalling events depends only on the video
buffer size d = p− q, but not on the concrete values of p and
q in the steady state.

C. Mean Value Analysis of Finite Videos and User Aborts

As we will see later in Section V, the steady state analysis
is sufficient to dimension the buffer. However, in practice,
playback is finite, either because the video is of finite length
T , or because a user aborts playback after a number of T
seconds. This behaviour is shown in Figure 1.

We do not consider the time until the initial playback, i.e.
the time between t0 and t2 as stalling, since it has a much
lower impact on the perceived quality than stalling [19]. First,
we consider the case where the user plays back the complete
video. Given the network bandwidth λ and a video of Z
Frames, the required download time for the complete video
is tZ = Z/λ. Within tZ there are N phases of stalling and
playback and each phase is of duration t3 − t1.

N =

⌊
tZ − t1 + t0
t3 − t1

⌋
(5)

Next, we consider the case where the user aborts playback
of the video after T seconds of video have been watched. Here,
the number of stalling phases is given as

N = bT/(t3 − t2)c , (6)
rounding down as we do not consider the initial delay before
playback as stalling. Again, we can obtain the number of
stalling events normalized by video length as N∗ = N/T .

IV. YOUTUBE QOE MODEL

A. Stalling QoE Model Q1

The QoE of HTTP streaming depends mainly on the actual
number of stalling events N for a video of duration T and
the average length L of a single stalling event. A QoE model
combining both key influence factors into a single equation
f(L,N) is provided in [3] and found to follow the IQX
hypothesis [20] describing an exponential relationship between
the influence factors and QoE. In particular, the model function
returns mean opinion scores (MOS) on a 5-point absolute
category rating scale with 1 indicating the lowest QoE and
5 the highest QoE.

f(L,N) = 3.5e−(0.15L+0.19)N + 1.50 (7)
Due to well known rating scale effects, the model in Eq.(7)
has a lower bound of 1.50, as users avoid the extremities of
the scale called “saturation effect”, see e.g. [21]. In contrast, if
the video is not stalling, no degradation is observed and users
rate the impact of stalling as ’imperceptible’, i.e. a value of 5.
It has to be noted that the model function in Eq.(7) is based on
subjective user studies with videos of duration up to T = 30 s.
For other video durations, the normalized number N∗ = N/T
of stalling events has to be considered which requires to adapt
the parameters α = 0.15 and β = 0.19 in Eq.(7), respectively.

1For the sake of readability, we use the term ’network bandwidth λ’ instead
of ’network bandwidth in terms of frames’ or ’network frame arrival rate’.

As the goal of our investigation is the analysis of the impact
of different user profiles, we parametrize the function in Eq.(7)
with α and β and conduct a parameter study on their impact.
For the sake of simplicity, we normalize the QoE value to be in
the range [0; 1]. As a result, we arrive at Eq.(8) as parametrized
QoE model Q1 to quantify the impact of stalling on QoE
for different user profiles expressed by α and β. Thereby, the
parameter α adjusts the sensitivity of the user to the stalling
duration L·N∗, while β quantifies the sensitivity of the user to
the actual number of stalling events, i.e. the video interruptions.
Therefore, we will also use the term ’duration parameter’ and
’interruption parameter’ for α and β, respectively.

Q1(L,N∗) = e−(αL+β)N∗
(8)

The model function Q1 in Eq.(8) has the same form as Eq.(7)
and follows the IQX hypothesis, but allows to investigate
different user profiles. For example, some users may suffer
stronger from interruptions which is then adjusted by a higher
value of β. Thus, a user profile is expressed by α and β.

B. Initial Delay QoE Model Q2

Another impairment on HTTP streaming QoE are initial
delays before the video playout start. The impact of initial
delays T0 is modeled by the following function g and the
model parameters are obtained from subjective tests [10].

g(T0) = −0.963 log10(T0 + 5.381) + 5 (9)

The results in [10] show that the impact of the initial delay
is independent of the video duration which was either 30 s or
60 s in the user tests. Further, it was observed that users have
a clear preference of initial delays instead of stalling and that
service interruptions have to be avoided in any case, even at
costs of increased initial delays for filling up the video buffers.

For the sake of simplicity, we normalize the function in
Eq.(9) yielding to the QoE model Q2 for initial delays T0, such
that Q2 returns values in [0; 1] and that Q2(0) = 1. The user
profile is parametrized with γ determining the impact of initial
delays. The constant c = 5.381 is taken from Eq.(9) defining
the shape of the curve. Since the logarithm is not bounded,
only positive values are considered to ensure Q2(T0) ∈ [0; 1].

Q2(T0) = −γ log10 (T0 + c) + γlog10 (c) + 1 (10)

C. Combined QoE Model Q

For dimensioning the video buffers, we are interested in
a QoE model which considers both, the impairments due to
stalling and due to initial delays of the video playout. However,
to the best of our knowledge no combined model exists so far
which has been validated by proper subjective user studies.
Therefore, we suggest the following model Q. Since the impact
of stalling events clearly dominates the user perception [3],
[10], we consider the following rationale for the combined
QoE model. A user facing an initial delay T0 experiences a
QoE value of Q2(T0). If additional stalling events occur, this
will lower the QoE further. Thus, Q2(T0) is the upper bound
of QoE. For N∗ stalling events with an average length L, the
QoE will be further decreased by Q1(L,N∗).

ITU-T Recommendation P.1201 proposes an additive QoE
model for non-adaptive HTTP streaming which is referred to
as buffer-related perceptual indicator in the Appendix III [22].



This model follows the same rationale above, start from the
maximum QoE value which is 1 = Q(0, 0, 0), subtract the
degradation 1−Q2(T0) stemming from initial delay, and from
stalling 1−Q1(L,N∗).

Then, we arrive at the following additive QoE model Q
used in the analysis.
Q(T0, L,N

∗) = 1− (1−Q1(L,N∗))− (1−Q2(T0))

= Q1(L,N∗) +Q2(T0)− 1 (11)

V. QOE STUDY FOR TYPICAL USER SCENARIOS

Typical usage scenarios of video streaming services reflect
the following user behaviors: A. Watch Later, B. Regular
Video Streaming, C. Video Browsing. For these scenarios,
the video buffer size d∗ is optimized concerning QoE and
the impact of the user profile (α, β) is analyzed for re-
alistic (α = 0.15, β = 0.2) and extreme values (α ∈
{0.05, 0.45}, β ∈ {0.05, 0.8}). The difference between the
steady state (Section III-B) and the finite case (Section III-B)
is 0.2 points on a 5-point MOS scale for 30 s videos. For the
Watch Later and Regular Video Streaming scenario, we assume
longer video durations and can use the steady state results.
In contrast, for Video Browsing short viewing times of 10 s
require the finite case results. For the sake of readability we
transformed the QoE value linearly to be in the range [0; 1].

A. Watch later Scenario

In the ’watch later’ scenario, a user requests a video, but the
user does not expect that the video playout starts immediately.
This may be the case for example when the user wants to
watch an HD movie even though the network bandwidth is low.
During that initial delay, the user may do something else, e.g.
opening another web page in a parallel tab in the browser, or
getting some snacks in the kitchen. Thus, QoE is not affected
by initial delays and we only need to consider Q1 in Eq.(8). In
the steady state, it is L = d/λ and N∗ = µ−λ

d and we obtain
the following QoE relation in Eq.(12).

Q1(L,N∗) = e(µ−λ)(α/λ+β/d) = e−α
1−a
a −β

1−a
d∗ (12)

Since the QoE function in Eq.(12) is strictly monotonically
increasing with the buffer size d∗, the optimum is achieved for
Q+ = lim

d∗→∞
Q1(L,N∗) = e−α

1−a
a . Thus, the QoE value only

depends on the parameter α in the limit. To see for which
buffer size we are close to the optimum, we consider the
relative difference Q+−Q1(L,N∗)

Q+
when it is less than Ω = 5 %.

This is true for d∗ > −β 1−a
log(1−Ω) .

For β ∈ {0.05, 0.2}, a small buffer size of d∗ > 4 s is
already sufficient to be close to the optimum Q+ for any
offered network condition a. For users extremely sensitive to
stalling (β = 0.8) buffer sizes up to 15 s are required. However,
a buffer of 4 s is sufficient for a relative difference to the
optimum of 20 %. In general, the larger the buffer size the
better the QoE is in this scenario. In practice, a buffer size of
4 s is a good choice.

B. Default Video Streaming Scenario

In the case of normal streaming, the user wants to watch
a video immediately. In contrast to the ’watch later’ scenario,
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Fig. 2. Dimensioning of buffer size in the Streaming Scenario for available
network bandwidth of a = 0.5. Maxima marked as dots mainly depend on β.

the initial delay now impacts the QoE according to Eq.(11).
Figure 2 shows QoE depending on the buffer size for the
streaming scenario and different user profiles in a network
situation a = 0.5 leading to a stalling ratio R = 0.5. Now,
QoE optima exist for finite buffer size, if the impact of the
initial delay is taken into consideration. We notice that α does
increase the QoE but has no significant impact on the optimal
buffer size. In contrast, for different β we observe different
optima for the buffer size. Therefore, we can ignore α when
optimizing the buffer size in regard to the QoE. A buffer size
less than 0.5 s results in a severe loss of QoE for all users. A
buffer size of 2-4 s offers a good QoE for the average user and
any sensitive user. Increasing the buffer size further decreases
the QoE. In practice, QoE is only marginally improved if the
user profile is known (see resulting optimal QoE values for
different β values in Figure 2).

C. Video Browsing Scenario

In the case of Video Browsing, the user watches a video for
a short period of time. This includes cases such as, viewing a
short video completely, viewing a short part of a long video or
skipping ahead in a video frequently (thus watching multiple
short parts of a video). Since we know from the previous
section that α and β have a marginal impact on the optimal
QoE, we consider only the default parameters α = 0.15 and
β = 0.2 in the following. However, for video browsing, the
impact of the initial delay may be more important for the user.
Therefore, we consider γ = 0.3 corresponding to Eq.(9) as
well as a delay sensitive user γ = 0.6.

In Figure 3, the impact of the buffer size on the QoE is
depicted for the case that the video is aborted after the first 10 s.
Multiple local QoE maxima exist independently of γ, which
appear when the number of stalls changes. The results for the
steady state are also included. We observe that the steady state
represents a worst case buffer dimensioning, but there is little
difference between steady state and the finite case. However,
for larger buffer sizes, the difference between the local maxima
and the steady state increases. Nevertheless, in those cases, the
initial delay exceeds tens of seconds. So this scenario can not
be described as realistic video browsing.

In general, if the exact viewing length of a video was
known (e.g. short videos will be watched completely), the
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buffer size could be set so that the QoE lies at a local maximum
which is independent of γ. However, this method can result
in a severe loss of QoE (depending on γ) if the user aborts
earlier. In practice, a buffer size of 1-2 s is recommended for
video browsing. If the buffer size is set too large, γ determines
again the actual QoE loss.

VI. CONCLUSIONS AND FUTURE WORK

Optimizing QoE of HTTP streaming can be realized by
proper dimensioning of video buffers. The question arises
whether the QoE optimization needs to take into account the
individual user profile or preferences as well as the usage sce-
nario. Therefore, we extended existing YouTube QoE models
by user profile parameters and analyzed such diverging user
profiles based on a queueing model of the video buffer.

The results of a mean-value analysis show that the optimal
video buffers require the actual user profile (α, β) parametriz-
ing the sensitivity to stalling, while the initial delay sensitivity
parameter γ can be ignored. In practice, recommendations
for the buffer size allows to neglect the actual user profile.
However, those practical recommendation then need to con-
sider the concrete usage scenario. In particular, it has to be
differentiated if the user is video browsing (buffer size 1-2 s)
or watching video immediately or later (buffer size 4 s). It has
to be noted that for the practical recommendations the network
and video characteristics are not relevant. In order to identify
the scenario, we recommend adding options to the player or
the website, the player is embedded in, in order to give the
user a direct choice on how to consume the traffic. Proper user
interfaces in the video client, e.g. specific gestures for mobile
phones, may indicate browsing behavior. These insights are an
important step for QoE-centric management of video delivery
in the Internet. Future work needs to address subjective user
studies for video browsing and for combined QoE models.
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